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The Resistive Bifurcated Parallel-Plate
Waveguide

HAO-MING SHEN

Abstract-The guided-wave prublem of a parallel-plate region with a

bffurcadog resistive sheet of firdte Iengtb is solved. After tbe space km

been divided fnto three regio~ the series srdutiom in them are matched

acrow the boundaries, TIWW tbe eigenequation is used to deterndne the

propagation and four sets of equations are solved for the mdmown coeffi-

dents. ‘fhe series solutions converge rapidly and are readily applied to

obtain conditions of maximum abaorpdon.

1. INTRODUCTION

o FTEN in a guided-wave system higher mode electro-

magnetic waves are excited by a nonuniform struc-

ture, and it is desired to absorb them without affecting the

principal mode. One method is with resistive material in a

specific location as shown in Fig. 1. Consider a TEM

wave that propagates in an infinite parallel-plate region in

the z-direction together with some of the lower TM and

TE modes. In order to absorb only the TM and TE waves,

a resistive sheet can be placed halfway between the paral-

lel plates where both the TM and TE modes have parallel

components, EX and E=, but the TEM mode does not. The

purpose of this paper is to solve this boundary-value

problem and get a theoretical representation of the TM

and TE waves, from which we can determine the resis-

tance R and width w of the resistive sheet which provide

the maximum absorption.

Only a few complex boundary-value problems have

been solved exactly and these have been accomplished by

integral transform techniques and the method of separa-

tion of variables [1]. In many boundary-value problems

one cannot find a coordinate system in which the coordi-

nate surfaces coincide with the boundaries in the whole

region. In this case, we can separate the space being

considered into several regions. The new regions must be

divided so that in each of them the coordinate surfaces

can coincide with the new boundaries completely. Then

we let the formal series solutions in the different regions

match the boundary conditions; these include the in-

terf aces between the new regions. This idea has been used

to solve problems of radiation and scattering by a finite

cone [2], [3], and problems of waveguide discontinuities

[4]. Recently a scattering problem involving a more com-

plex shape, such as a spherical mirror, has been solved
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Fig. 1. The resistive bifurcated parallel-plate waveguide.

using this approach [5]. In the present paper we apply this

method to solve the problem of the resistive bifurcated.

parallel-plate waveguide.

II. THE BOUNDARY CONDITIONS

Suppose the parallel-plate region is infinite in both the

x- and z-directions and the electromagnetic waves propa-

gate in the z-direction. It follows that the fields are x-

independent. The y- and z-components of the fields can

be expressed in terms of EX and HX which satisfy the

Hehnholtz equation and represent TE and TM waves,

respectively. They are

H_l~——
y jcopo az

1 aEx
Hz=–——

jupO a~

E=_ 1 aHx——
Y

joco az

1 aH
E==— L

jaco ay “
(1)

The boundaries of the parallel-plate region are at y =

kh, z=*co, andy=*O, lzl<w/2. The boundary of the

resistive sheet coincides with only part of they= O surface.

For this reason, we separate the space in the parallel-plate

region into the three parts: z < – w/2, – w/2< z < w/2,

w/2 <z, which are denoted, respectively, by I, II, III. In

each of these regions the new boundaries coincide com-

pletely with some coordinate surfaces. For instance, in

region II the boundaries coincide with the coordinate

surfaces: y= ~h, y= fO, z= f w/2. Let the fields ~ and

E with subscripts I, II, III represent the fields in the three

regions. The boundary conditions are: EX = E= = O for y =
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~h; E1=E1l, H1=H1l for z= —~/2, IYI <h; E1l=E1ll, The reflected field can be expressed in terms of an infiiite

fiII = fiIII for z = + w/2, Iy I < h. These imply that series as follows:

aEX1 3EX11
forz=–w/2: EXl=EX1l ~=~ (2a)

~=o n (%%Y)e’P[an(z+w,’:,]
HXr(y, z)= ~ a sin

HX1
aHxl aHxll

=HX1l —=—
az az

(2b)

aExll aExlll
for z= w/2: EX1l =EX.ll ~ = ~ (3a)

aH aH
H xII =HX1ll ~ = ~ . (3b)

When y= O, [z I < w/2, there are two cases.

Case 1: When d<i$ d<h, we have EX1l(O+, z) = E.II
(O– , z); EZ1l(O + , Z) = EZ1l(O– , z); HzII(o+ , z) – HZII

(0 – , Z)= J%(O, Z)/~; HxI@ + , Z) – Hxn(O – , Z)=

– E=II(O, z)/R, where d is the thickness of the sheet, 8 is

the depth of the penetration, and R is the resistance of a

square meter of the sheet. It follows that

EX1l(O+ , Z)= EX1l(O– , Z) (4)

aHxll 1 aHxll

a~ ‘—=0+ ay y-o-
(5)

(9)

where the an are unknown coefficients to be determined

later.

Region 11: In this region both transmitted and reflected

waves exist, due to the sheet. Consider condition (5) and

Ezly-*h = O.We can express HX as

Hxll(yj ~)= A ~~o(bn exp [ –13Jz+w/2)]

+c. exp [/ln(z-w/2)]) cos yJh Ty),,

yao (10)

where ~~ ‘F y. – k , and the yn are undetermined eigen-

values.

Region 111.’ There is only a transmitted wave in this

region. It is

aEx.l–1 aExll—— “ (*~Y)e’P[-~n(z-w/:~)l.
ay ay y+

= –MOEXII(O, z)/R (6) ‘xIII(Y’ ‘) “ ~.odn ‘ln
-o+

“q /R@.o.(3HX1l(O+, Z)– HX1l(()-, z)=J ay ~ ~

Case 2: When il<d<<~, we have HZ1l(O +, z)=

EX1l(O + , z)/R+ ; HX1l(O + , Z)= –EZ1l(O + , Z)/R+ ;

–HZ1l(O–, Z)= EX1l(()-, Z)/~-; HX1l(O–, z)= Ezll(O–

, z)/R–, where R+ or R – is the upper or lower skin

resistance. From the geometrical symmetry of the incident

field it follows that EX1l(O +, z) = EX1l(O –, z) and EZ1l(O +
, z)= EZ1l (0 —, z). These yield conditions of the same form

as (4)– (7). However, 1/R= 1/R+ + 1/R– where R is still

the resistance per unit area of the sheet.

III. GENERAL SOLUTION

Consider the TM wave for which EX = O. The general

solutions for the different regions are:

Region Z: Both incident and reflected fields exist in this

region. The incident field can be expanded as follows: 1

~=o (*.Y)e’P[-%(z+w’2)1HXi(y, z)= ~ g. sin

(8)

where

1We only consider the antisymmetric case of HX since, if the incident
field which includes the TEM wave is symmetric, there is no induced
current on the reeistive sheet, We can easily write down the traveling
waves in regions II and III: HX1l(y, z) = HX1ll(y, z) E=HXi( y, z). These

satisfy (2b), (3b), (5), and (7). This means that the resistive sheet does not
influence the TEM wave at all.

([11)

IV. COEFFICIENT EQUATIONS

In the formal solutions (9)–(11) the unknown coeffi-

cients ae, b,,, Cn, d., and the eigenvalues y. are to be

determined from boundary conditions (2b), (3b), (5), (7).

At y = O, Iz 1< w/2, (10) satisfies (5) automatically. Sub-

stituting (10) into (7), we get

X (~n e’p [ -&(z+w/z)] +Cn q [Bn(z-w/z)])
n=O

(o 2cos(hy.)
)

– ~ sin (by. ) =0. (12)
UCOR

This equation can be satisfied if

(h.) tin (h.)=j~~ (13)

where r~ =2khR/Ro and Ro= ~z = 120770. Subs-

tituting (8)-(10) into (2b), we get

+ z (bn+cnexp(–pnw)) cos yn(h~y),=_

n=o

yao. (14)

Multiplying each side by sin ((2rn + 1/2h)~y)@ and in-

tegrating from – h to h, we obtain

g.+ am= ~ Lm,n(bn+cne-fimw), rn=O, 1,2,... (15)
n=O

where
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h

J(
sin %W’) Cos Yn(~–Y)@

L=”m,n
h sin 2zn+ 1

J[ ( 2h ‘y )12dYo
= 77(2m+1) COS(y.h)

[Wbnh)’l”
(15a)

From

aHxl aHxll
—= —

az az

of (2b) we have

Using the same procedure as above, we get

(%-%)%= ZoLn(h-Cn w(-~nw))pn,

m=O, 1,2, . . . . (16)

Also at z= w/2 from (3b) we have

dream= z Lm,n(bnew(-/3nw) – Cn)/3n,
~=f)

m=o, 1,2, . . . . (18)

V. SOLUTION

We have derived ( 13) to determine the eigenvalues yn or

propagation constants ~~, and four sets of equations (15)-

(18) to determine the four sets of coefficients a~, bn, Cn,

d.. These sets of equations can be reduced. From (15) and

(16) eliminating a. we get

~L~~[b(l+%)+c~(l-:)exp(-fl~w)l=2gmy~=o

m=O, 1,2, . . . . (19)

From (17) and (18) eliminating dn we get

~Lm~[b(l-2)e-’”w+cn(1+$)l=0~=o

m=O, 1,2, . . . . (20)

Let us now form (19)*(20). We finally get two indepen-

dent sets of equations:

~ S~,.~=g~, m=O, 1,2,... (21)
~=o

where

TABLE I
RSAL AND IMAGINARY PARTS OF ymh FOR DrFFERSNT r~

——.

n
‘M

= 0.1
‘M

=2
‘M

= 10

0 0.2273 + jO.2198 1.1739 + jo.5808 1.5547 + jO.1567

1 3.1418 + jo.0318 3.3106 + jO.6486 4.6486 + jo.5016

2 6.2832 + jO.0159 6.3015 + jO.3277 7.8382 + jO.9662

3 9.4248 + jO.0106 9.4298 + jO.2152 10.1290 + jl.3499

4 12.5664 + jO.0080 12.5685 + jO.1605 12.7242 + jl.0279

5 15.7080 + jO.0064 15.7090 + jO.1280 15.7578 + jO.7451

6 18.8500 + jo.0053 18.8502 + jO.1065 18.8727 + jO.5890

7 21.9911 + jO. 0046 21.9915 + jO.0912 22.0039 + jO.4900

TABLE II
~ mm h.lAGINARY pARTS OF 1,., ~ FOR r~= 10

m *=0 ~=1

o 1.0067 - jO.0496 -0.0089 - jO.0846

1 0.0096 - jO.0746 -1.0464 + jO.0451

2 0.0046 - jO.0416 -0.0509 + jO.1974

3 0.0031 - jO.0292 -0.0213 + jO.1143

~=z ~=3

o -0.0019 + jO.0633 0.0369 - jO.0475

1 0.0298 + jO.2817 0.1244 - jO.1831

2 1.1693 + jO.0059 0.2033 - jO.6103

3 0.1912 - jO.3347 -1.2094 - jO.3710

s:, “=
L, .(1+P./cxm* (1–P./aJw(-B.w))

2 Y

In order to solve (21), we must solve (13) for y. and

evaluate S;,., After using the iterated interpolation

method to solve (13), we get the real and imaginary parts

of Y. h for different r~ (Table I). Real and imaginary parts

of L~, n for rM = 10 are give in Table II. We can see that

the L~,. are very small except L~, ~. This is true in the

range r~ >5.2 In this case, we can neglect the terms n # m

and get the solutions of the coefficients a. and d.

g.(1 –13~/a~)(l – exp( –2w&))

an= [(l+pn/an)2-(1-Pn/an)2 exp(-2wPn)]

4gn(&/~n) ew( – W%)
d.=

[(1 +%/an)z-(1-Pn/an)2exp( -2@.)] “

(22)

(23)

Let the height h be chosen such that only the lowest

TM mode can propagate, i.e., A/4< h < 3A/4. Then the

incident field (8) becomes g.= O except for go, and all of

the coefficients are zero except for n= O. Finally, we get

the reflection and transmission coefficients of the TMOI

2From (13) we see that when nz>>r~, ynhsnw (see Table I). This
suggests that the Lm ~ have a very good convergent behavior. From the
definition of Lm,. h (15a), when n>m, cos ynh=(– 1)” and Z,m,n
decreases inversely as the square of n (Lm, ~s I/nZ).
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Fig. 3. IT I and IA I as functions of rM and rE

were caused by the resistive sheet. They are 3 R=300Q, h:!.12

A= – so/go 10
O) ITI of TM-WAVE

(2)IAI XIO of TM-WAVE

(1 -1#/2Yij)(l -exp(-z@o))
=—

[(l+ BO/~0)2-(1-Bo/ao)2 exp(-2w~o)] ’24)

T= do/go 05 –

4(130/cxo) exp( –@o)

= [(1+80/f%)2-(1-Bo/ao)2 exp(-2w~o)] ~ ’25)

The quantities yoh, poh are plotted in Fig. 2 as functions

of rM.

In order to see the physical significance of formulas

(24) and (25), we reduce them further. Because /30wxo and

Re PO> O, the second term in the denominator is much

smaller than the first term. After neglecting it, we get

A + [(&- ~O)/(@O+CXO)]

+ [(so–po)/(ao+80)]exp( –2W&)exp(-~2w131)

(24a)

T= exp( – w~~) exp( –jw~l) (25a)

where PO= ~~ +j~l. In (24a), the first term is the wave

reflected from z = —w/2, and the second term is the wave

reflected from z = w/2 which has a larger amplitude decay

(exp( – 2w/3~)) and phase delay (exp( –j2wfl,)). The factor

2 before w is due to the fact that the second reflected

wave passes the resistive sheet twice. In (25a), the ampli-

tude decay and phase delay of the transmitted wave are

without the factor 2, because the wave passes the resistive

sheet only once. The IA I and IT [ values are plotted in

Figs. 3 and 4 as functions of r~ and w/A, respectively.

VI. THE IbLSISTIVE SHEET AS ABSORBER

The resistive sheet can be used as an absorber. As

shown in Fig. 5, the parallel-plate waveguide is terminated

‘The definition of A is A = Eyr /Eyi = – a. /go.

1 I I I I I
as 1.0 15 20 25

---zr

Fig. 4. IT I and 1A I as functions of w/A.

by a short-circuiting piston. We want to choose the resis-

tance R, sheet width w, and position p such that the

reflected wave is minimal In this case, the general solu-

tions are the same, but in region III:

,,=, n (%+-(-+2)~. III(Y, z)= ~ d sin

(26)

Using the same procedure, we get the equations for the

coefficients:

gin-am= ~ Lm,n(bn-cn exp(- w&))&/a~
~=o

dm cosh amp= ~ Lm,n(bn exp(-w~.)+c.)
n=O

–dm sinh amp = ~ Lm,n(bn exp(– w~~) –c~)&/a~.
.=0

(27)

The reflection coefficient of the TMO1 wave is
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#o-no_—
/30 + (YO

go /CYo–j tan cilp

/30/ao +j tan alp
exp( –2w80)

[

~_(po–ao)(Bo/~o–jtan~Ip) ~xp(–2wpo)

(Po +~o)(Po/~o +j tan W) 1

=(/30–a(J/(1$+~o)

–exp(–2w~~)exp( –j2(w~1+a1p)). (28)

The physical significance of (28) is evident. The first term

represents the wave reflected by the sheet, and the second

term represents the wave reflected by the metal piston,

where exp( – 2w~~ ) is the decay factor and exp( –j2( w131

+ alp)) is the phase delay. The appearance of the factor 2
is due to the fact that the wave passes the sheet twice; the

minus sign is due to the phase reversal at the metal piston.

The maximum absorption occurs when A is equal to

zero. From (28) we have

(29)

For example, if r~ = 2, h = A/2, it follows that kl = 5.4414,

~fi~ = 0.4576, and A~l = 5.9602. From (29) we obtain w=

3.0628A and p= O.1721A. Fig. 6 shows A as a function of

p/X for selected values of w.

VII. THE TE WAVE

From the boundary conditions (2a), (3a), (4), (6) for the

TE wave, the general solutions are

.=0 ( ( ‘))+%”Y)Ex.(y, z)= ~ gn exp –a. z+ ~

(30)

~=o ( ( ‘))4%)Exr(y, z)= ~ an exp +an z+ ~

(31)

7 . R=120Q, h, X/2

2–

1

025 05

P/

Fig. 6. 1A I as a function of p/A.

TABLE III
~AL AND hiAGINARY PARTS OF&,. FOR rE = 1

m ~=o ~=~ ~=z

o 1.1384 + 30.1128 -0.0107 - jO.1023 0.0012 + 30.0340

1 -0.0006 - jO.1167 -1.0093 - jO.0222 0.0026 + jO.0509

2 -0.0028 - jO.0384 -0.0025 + jO.0518 1.0029 + jO.0081

3 -0.0017 - jO.0191 -0.0004 + jO.0207 0.0011 - jO.0340

4 -0.0011 - jO.0115 -0.0001 + jO.0115 0.0002 - jO.0145

5 -0.0008 - jO.0076 -0.0000 + jO.0074 0.0001 - jO.0085

~=3 ~=4 *=5

o -0.0003 - jO.0170 0.0001 + jO.0102 -0.0000 - jO.0068

1 -0.0004 - jO.0203 0.0001 + jO.0113 -0.0000 ~ jO.0072

2 -0.0011 - jO.0339 0.0002 + jO.0145 -0.0001 - jO. 0085

3 -1.0014 - jO.0041 0.0006 + jO.0254 -0.0002 – jO. 0113

4 -0.0006 + jO.0254 1.0009 + jO.0025 -0.0004 - jO.0203

5 -0.0002 + jO.0113 0.0004 - jO.0203 -1.0006 - jO.0017

(33)

Substituting (32) into (6) we get

cot y. h =J”/r~yn h , r~= 2R/khRo. (34)

Substituting (30)–(33) into (2a) and (3a), we obtain the

equations for the coefficients

(gm+am)= 2 ~m,.(~.+c. eXp(-@.)),
~=o

m=O, 1,2,.”” (35)
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am(gm--~m)= X JL,n(%-cn exN-w4J)&7
n=O

rn=o, 1,2,. . . (36)

d~= z Lm,.(b. exp(–@J+c.),
~=o

m=O, 1,2,. . . (37)

a~d~= ~ Lm, n(bn exp(–w~~)–c~)&,
~=o

rn=o, 1,2,. . .

where

~hsi.Yn(h-Y)..s( *.Y)@

L .
m,n

h co, 2m+ 1

J[ ( 2h ‘y )1‘&

‘[(2;::crynh1“—T‘-(ynh)’
2

(38)

(39)

The form of (35)-(38) is exactly the same as (15)-(18)

except the values of& and Lw, ~ are different because the

eigenequation (34) and the definition of L~, ~ in (39) are

different. Thus, we have the same formal solutions (22)

and (23) and, for the absorber, the solution is the same as

(28).

The quantities yoh, ~oh are plotted in Fig. 7 as func-

tions of r~. In Fig. 8 IA I and IT I are shown as functions of

w/A; they are plotted as functions of r~ in Fig. 3. The

L ~,. are listed in Table III for r~ = 1.

VIII. CONCLUSION

All effects due to the presence of a resistive sheet have

been determined by the parameter rM or r~ for the TM or

TE wave, respectively. The sensitive ranges of r are 0.2–20

for the TM wave, 0.02–2 for the TE wave (see Figs. 2, 3,

and 7).

Both the TM wave and the TE wave have the maximum

decay coefficient Jl~(r) (see Figs. 2 and 7): for the TM

wave at r~ = 2, for the TE wave at r~ = 0.2. From these

two conditions, we can determine the resistance R and

height h such that both the TM wave and the TE wave are

subjected to maximum absorption. Because rM. r~ =
(2 R/Ro)2, we obtain R= 120 Q and h=A/2.

The decay coefficient of the TE wave is much larger

than that of the TM wave. Because the sheet extends to

infinity in the x-direction, it interacts effectively with the

TE wave which has an Ex component. Fig. 9 shows that

~~ of the TE wave is 5 times that of the TM wave.

With the sheet as an absorber both TM and TE waves

have points of maximum absorption, but the absorption

of the TE wave is more evident as shown in Fig. 6. The

optimum width for the TE wave is much more shorter

than that for the TM wave. When R= 120 Q, w ~A/4 for

the TE wave and w ~ 3A for the TM wave.

,

2X

2(

v~

1(

(1) Re(Yoh), TE-WAVE

(2) Im(YOh), TE-WAVE

(3) Re(/90h), TE-WAVE

(4) Im (&,h), TE-WAVE

\

/
I

2512510 100 p

Fig. 7. Reaf and imaginary parts of yoh and &h as functions of r~;

&h =T.

I R=300Q, h= X/2

(11ITI of TE-WAVE

(2) IAIx3 of TE-WAVE I
1,0

05 –

o 05 10 15 20 25

Fig. S. ITI and 1A{ as functions of w/A.

h = W2
(l)#Rh of TM-WAVE

(2)@Rh of TE-WAVE

io –

~Rh

T

05 -

3612 30 60 120 300 600 12K 3K

Rx

Fig. 9. Comparison of deoay coefficients.
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TABLE IV
TRANSMISSlO~Cmrmcmrrs T- R5m~moN COBFFIc~ms~

OBTAINSDUSINGN TrmMsIN SIMULTANEOUSEQUATIONS(21)

N =M=o. l r“=z ‘M = 10

T of TM Wave

o ~820e-jl.5698
1.

0 ~904e-jl.4838
0.9569e-j1” 3677

o ~815e-jl.5413
2.

~ ~149e-jl.4680 o ~576e-jl.3700

o ~887e-jl.4976
4.

0 ~395e-jl.4560
0.9596e

-jl.3735

o ~905e-jl.4S43
6.

0 ~465e-jl.4503
0.9626 e-jl” 3754

8
0 ~507e-jl.4460

0.9908 e-j1”4780 .
0 ~626e-jl.3758

A of TM Wave

o ~417e-j0.0345
1.

0 ~084e-j 0.6093 0 0310e-jl.1921

o ~506e-j0.0138
2. o.1074e-jO”’307 0.0310e-j1”1884

4
0 0945e-j0.4864

0.1188 e+j0”0397 .
0 0301e-j 1.1995

0 ~087e+j0.0553
6. 0.0891e-j0”4417 0.0325e-j1”1400

o ~042e+j0. 0615
8.

0 0853e-j0.4143 0 0320e-j 1.1000

The solutions (22)–(25) and (28) are of first-order, but

they have sufficient accuracy over a wide range of resis-

tances R. Table IV shows a comparison between the

solutions that have been obtained using different numbers

N of terms in the simultaneous equations (21). Because

the incident field has only one term (g. = 8nO) and S:, ~

converges more rapidly, the solutions change little when

the number N of terms is larger than 4. When r~> 2, the

relative error in the first-order solution is less than 3

percent. Thus the formulas (22)–(25), (28), and (29) can

be used in practical cases with sufficient accuracy.
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