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The Resistive Bifurcated Parallel-Plate
Waveguide

HAO-MING SHEN

Abstract—The guided-wave problem of a parallel-plate region with a
bifurcating resistive sheet of finite length is solved. After the space has
been divided into three regions, the series solutions in them are matched
across the boundaries, Then, the eigenequation is used to determine the
propagation and four sets of equations are solved for the unknown coeffi-
cients. The series solutions converge rapidly and are readily applied to
obtain conditions of maximum absorption.

1. INTRODUCTION

FTEN in a guided-wave system higher mode electro-

magnetic waves are excited by a nonuniform struc-
ture, and it is desired to absorb them without affecting the
principal mode. One method is with resistive material in a
specific location as shown in Fig. 1. Consider a TEM
wave that propagates in an infinite parallel-plate region in
the z-direction together with some of the lower TM and
TE modes. In order to absorb only the TM and TE waves,
a resistive sheet can be placed halfway between the paral-
lel plates where both the TM and TE modes have parallel
components, E, and E,, but the TEM mode does not. The
purpose of this paper is to solve this boundary-value
problem and get a theoretical representation of the TM
and TE waves, from which we can determine the resis-
tance R and width w of the resistive sheet which provide
the maximum absorption.

Only a few complex boundary-value problems have
been solved exactly and these have been accomplished by
integral transform techniques and the method of separa-
tion of variables [1]. In many boundary-value problems
one cannot find a coordinate system in which the coordi-
nate surfaces coincide with the boundaries in the whole
region. In this case, we can separate the space being
considered into several regions. The new regions must be
divided so that in each of them the coordinate surfaces
can coincide with the new boundaries completely. Then
we let the formal series solutions in the different regions
match the boundary conditions; these include the in-
terfaces between the new regions. This idea has been used
to solve problems of radiation and scattering by a finite
cone [2], [3], and problems of waveguide discontinuities
[4]. Recently a scattering problem involving a more com-
plex shape, such as a spherical mirror, has been solved
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Fig. 1. The resistive bifurcated parallel-plate waveguide.

using this approach [5]. In the present paper we apply this
method to solve the problem of the resistive bifurcated
parallel-plate waveguide.

II. THE BOUNDARY CONDITIONS

Suppose the parallel-plate region is infinite in both the
x- and z-directions and the electromagnetic waves propa-
gate in the z-direction. It follows that the fields are x-
independent. The y- and z-components of the fields can
be expressed in terms of E, and H, which satisfy the
Helmholtz equation and represent TE and TM waves,
respectively. They are
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E‘=jweo ay (1

The boundaries of the parallel-plate region are at y=
*h, z=* o0, and y=*0, |z| <w/2. The boundary of the
resistive sheet coincides with only part of the y =0 surface.
For this reason, we separate the space in the parallel-plate
region into the three parts: z< ~w/2, —w/2<z<w/2,
w/2 <z, which are denoted, respectively, by I, II, III. In
each of these regions the new boundaries coincide com-
pletely with some coordinate surfaces. For instance, in
region II the boundaries coincide with the coordinate
surfaces: y=+h, y=*0, z=*+w/2. Let the fields E and
H with subscripts I, II, III represent the fields in the three
regions. The boundary conditions are: E,=E =0 for y=
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th; Ey=Ey, Hy=Hy for z=—w/2, |y|<h; Ey=Ey,
Hy=Hyy for z=+w/2, | y| < h. These imply that
aExl _ aE‘xll

forz=-w/2: E;=E, PRy v (2a)
H, =H.y a;szl = E% (2b)

forz=w/2: E,y=E.y % aEa‘zm (32)
Hoy=H, aI:;H Bla{zm . (3b)

When y=0, |z| <w/2, there are two cases.

Case 1: When d<8, d<A, we have E, ;(0+,z)=E,
0-,z); Eu0+,2)=E0—,z); Hy0+,z)—H
0-,2)=E 40 2)/R; HyO0+,2)-H;0-,2)=
—E,;;1(0, z)/R, where d is the thickness of the sheet, § is
the depth of the penetration, and R is the resistance of a
square meter of the sheet. It follows that

ExII(0+’Z)=ExII(0_sZ) (4)
aI{xII — aHxn
oy Iy-0+ © 0 ®)
OE,y OE, u :
ot _%5m - _ R
ay L=o+ 9 fymo JopoE,n(0,z)/R (6)
xII
H,(0+,2)—H;(0-,z2) ‘] 3y /Rweo @)

Case 2: When 8<<d<<}\, we have H,;(0+,z)=
E.n(O+, Z)/R+ Hy O+, z)=—-E 0+, 2)/RY;

H,y(0—,2)=E,;0-,z)/R™; Hy(0—,2)=E,(0-
,z)/R™, where R* or R™ is the upper or lower skin
resistance. From the geometrical symmetry of the incident
field it follows that E,;;(0+, z)=E,;(0—, z) and E,;(0+
»2)=E_;(0—, z). These yield conditions of the same form
as (4)—(7). However, 1/R=1/R* +1/R™ where R is still
the resistance per unit area of the sheet.

III. GENERAL SOLUTION

Consider the TM wave for which E,=0. The general
solutions for the different regions are:

Region I: Both incident and reflected fields exist in this
region. The incident field can be expanded as follows:!

Ho(3.2)= 3 gusin (25 ay ) exp [—a(z+w/2)]

n=0
(8)

where

2n+1 2,
a,,—\/( % 'n') —k* .

'We only consider the antlsymmetnc case of H, since, if the incident
field whxch includes the TEM wave is symmetnc, there is no induced
current on the resistive sheet. We can easﬂy write down the traveling
waves in regions Il and III: H,(y, 2)=H,y(y, z)=H, (v, z). These
satisfy (2b), (3b), (5), and (7). This means that the resistive sheet does not
influence the TEM wave at all.
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The reflected field can be expressed in terms of an infinite
series as follows:

. {2n+1
er(y’z)"' Eansm( 2h

n=0

wy) exp [an(z+w/2)]
®

where the a, are unknown coefficients to be determined
later.

Region II: In this region both transmitted and reflected
waves exist, due to the sheet. Consider condition (5) and
E,|,~.,=0. We can express H, as

Hoy(y,z)=% Zo(b,, exp [ —B.(z+w/2)]
+c,exp [ B,(z—w/2)]) cos v,(hFy).

y=0 (10)
where 8, =\/y> —k? , and the v, are undetermined eigen-
values.

Region III: There is only a transmitted wave in this
region. It is

. {2n+1
HxIII(y’z)== zdnsul( 2%

n=0

wy) exp [ —a,(z—w/2)].
(11)

IV. CoEFFICIENT EQUATIONS

In the formal solutions (9)-(11) the unknown coeffi-
cients a,, b,, c,, d,, and the eigenvalues vy, are to be
determined from boundary conditions (2b), (3b), (5), (7).
At y=0, |z|<w/2, (10) satisfies (5) automatically. Sub-
stituting (10) into (7), we get

2 (byexp [ —B(z+w/2)]+c,exp [ B(z—w/2)])

n=0

(Zcos(hy,,)—— .YR sm(hy,,))=0. (12)

This equation can be satisfied if
(hv,) tan (hy,)=jry, (13)

where r,=2khR/R, and Ry=V p,/e; =1207Q. Sub-
stituting (8)-(10) into (2b), we get

. [2n+1
S (go+a,) sin (2 my )
n=0
n=0
y=0. (14

Multiplying each side by sin (2m+1/2h)7y)dy and in-
tegrating from —#h to h, we obtain

gm+am= 2 Lm,n(bn+cne-ﬁnw)’

n=0

m=0,1,2,--- (15)

where
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wy) cos v,(h—y)dy

fhsin(2m+1

0 2h
R . (2m+1 2
j(;[sm( 2k wy)]dy

_ _7(@m+1) cos () (15a)

R

aHxI — aI‘{xll
3z oz

m,n

From

of (2b) we have
. (2n+1
'Eo(gn*‘an)an sin (T Wy)

=+ > (B,~c, exp (—Bw))B, cos v,(hFy),

n=0
y=0.
Using the same procedure as above, we get
(gm—am)am= 2 Lm,n(bn—cn exp(_—an))Bn’
n=0
m=0,1,2,---. (16)
Also at z=w/2 from (3b) we have

dm = 2 Lm,n(bn exp(_an) +cn)’

n=0
m=0,1,2,--- (17)
dmam = 2 Lm,n(bn exp(_an)—cn)Bn’
n=0

m=0,1,2,---. (18)

V. SoLUTION

We have derived (13) to determine the eigenvalues v, or
propagation constants $,, and four sets of equations (15)—
(18) to determine the four sets of coefficients a,, b,, c,,
d,. These sets of equations can be reduced. From (15) and
(16) eliminating a,, we get

>L,, b,,(l + igﬂ-) +c,,(1 - —'B—”)exp(-—ﬁnw)} =2g,,
n=0 ’ &, &
m=0,1,2,---. (19)
From (17) and (18) eliminating d, we get
5 2 o1 L)oot 1) o
n=0 ' %m A
m=0,1,2,---. (20)

Let us now form (19)*(20). We finally get two indepen-
dent sets of equations:

2 Sr;l_.-,nj;:=gm’ m=0, 1,2’...
n=0

eay)

where
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TABLEI
REAL AND IMAGINARY PARTS OF v,/ FOR DIFFERENT 7y,

n rM=0.l rM=2 rM=lO
0 0.2273 + j0.2198 1.1739 + 30.5808  1.5547 + 30.1567
1 3.1418 + j0.0318 3.3106 + j0.6486  4.6486 + 10.5016
2 6.2832 + j0.0159 6.3015 + 30.3277  7.8382 + 30.9662
3 9.4248 + j0.0106 9.4298 + j0.2152  10.1290 + j1.3499
4 12.5664 + j0.0080  12.5685 + jO.1605 12.7242 + j1.0279
5  15.7080 + j0.0064  15.7090 + j0.1280 15.7578 + j0.7451
6  18.8500 + j0.0053  18.8502 + j0.1065 18.8727 + j0.5890
7 21.9911 + j0.0046  21.9915 + 30.0912  22.0039 + j0.4900
TABLE II
REAL AND IMAGINARY PARTS OF L,,, , FOR 1, =10

m n=20 n=1

0 1.0067 - j0.0496 -0.0089 - j0.0846

1 0.0096 - j0.0746 -1.0464 + j0.0451

2 0.0046 - j0.0416 -0.0509 + j0.1974

30,0031 - j0.0292 -0.0213 + j0.1143

n =2 n=3

0 -0.0019 + j0.0633  0.0369 - 30.0475

1 0.0298 + j0.2817  0.1244 - 30.1831

2 1.1693 + j0.0059  0.2033 - 30.6103

3 0.1912 - j0.3347  -1.2094 - 30.3710

Si- — Lm,n(1+ﬁn/ami(1_Bn/am)exp(_ﬁnw))
m,n 2 s
fo=(bxec,).

In order to solve (21), we must solve (13) for y, and
evaluate S, ,. After using the iterated interpolation
method to solve (13), we get the real and imaginary parts
of v,k for different r,, (Table I). Real and imaginary parts
of L, , for r,,=10 are give in Table II. We can see that
the L, , are very small except L, ,,. This is true in the
range r,,> 5.2 In this case, we can neglect the terms n5<m
and get the solutions of the coefficients a, and d,,

__ &(1=p/ad)(1-exp(~248,)

[(1+8,/0, = (1-B,/, ) exp(—28,)]
4 —
‘- ol B/ 2) o2~ ) o
[(1+8,/a,)' ~(1-B,/a, Y exp(~2w8,) ]

Let the height 4 be chosen such that only the lowest
TM mode can propagate, i.e., A/4<h<3A/4. Then the
incident field (8) becomes g, =0 except for g,, and all of

the coefficients are zero except for n=0. Finally, we get
the reflection and transmission coefficients of the TM,

(22)

2From (13) we see that when nwr,,, y,hxnn (see Table I). This
suggests that the Z,, , have a very good convergent behavior. From the
definition of L, , in (15a), when n>m, cos y,h=(—1)" and L, ,
decreases inversely as the square of n (L, ,~~1/n2).
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(1) Re(y,h), TM-WAVE
(2) Im (y,h), TM-WAVE
(3) Re{By-aghhx 4, TM-WAVE
(4) Im(Bg-a lhx 4, TM-WAVE
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Fig. 2. Real and imaginary parts of yok and (By—ag)k as functions of
ry; kh=a.

were caused by the resistive sheet. They are 3
A=—ay/g
_ (1 -85/ 3)(1—exp(—2wh,))
[(14 B/ 20) ~ (1= Bo/ o) exp(~ 2w, ]

T=d,/sg,
- 4 Bo/ ap) exp(—wh,) ) (25)

[(1+Bo/at0)2 = (1= Bo/ o) exp(—2wy) |

The quantities vk, S,h are plotted in Fig. 2 as functions
of ry,.

In order to see the physical significance of formulas
(24) and (25), we reduce them further. Because 8,~a, and
Re B,>0, the second term in the denominator is much
smaller than the first term. After neglecting it, we get

A=[(By—ag)/(By+ag)]

+ [(“o_ﬂo)/(ao*‘ﬁo) ]exp( —2wBg) exp(—/2wB,)
(24a)

T=exp(—wBg) exp(—jwPy) (252)

where f,=pz+jB;. In (24a), the first term is the wave
reflected from z= —w/2, and the second term is the wave
reflected from z=w/2 which has a larger amplitude decay
(exp(—2wpg)) and phase delay (exp(—;2wpB;)). The factor
2 before w is due to the fact that the second reflected
wave passes the resistive sheet twice. In (25a), the ampli-
tude decay and phase delay of the transmitted wave are
without the factor 2, because the wave passes the resistive
sheet only once. The | 4| and |T'| values are plotted in
Figs. 3 and 4 as functions of r,, and w/A, respectively.

(24)

VI. Tue RESISTIVE SHEET AS ABSORBER

The resistive sheet can be used as an absorber. As
shown in Fig. 5, the parallel-plate waveguide is terminated

3The definition of 4 is A=E,, /E,,= —a, /g,
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h=x/2,w=x/4
(11T1 of TM-WAVE
(2}IAl of TM-WAVE
(3)ITI of TE-WAVE
(4) 1Al of TE-WAVE
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Fig. 3. |T|and | A| as functions of r,, and 7.

R=300 4, h=x/2
(1T of TM-WAVE
(2)1A1x10 of TM~WAVE

051

| i | i
Qs 10 5 20 25

w/n

Fig. 4. |T|and |A4| as functions of w/A.

by a short-circuiting piston. We want to choose the resis-
tance R, sheet width w, and position p such that the
reflected wave is minimal. In this case, the general solu-
tions are the same, but in region III:

. (2n+1
Hxlll(y’z)= 2 dn sm( 2h

n=0

wy) cosh a,(z—p—w/2).
(26)

Using the same procedure, we get the equations for the
coefficients:

gm+am= 2 Lm,n(bn+cn exp(—w,B,,))

n=0

Em—Om= 2 Lm,n(bn_cn exp(—an)):Bn/am

n=0

d,cosha,,p= > L, (b, exp(—wB,)+c,)

n=0
-'dm sinh &, P= 2 Lm,n(bn exp(_wﬂn)—cn)ﬂn/am'

n=0
@7

The reflection coefficient of the TM,, wave is
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Fig. 5. The resistive absorber.

- Bo—ap
By +ag

Bo/ap—jtan a;p

Bo/ o +j tan a;p

_ (Bo—eo)(By/ag—jtan a;p)

(Bo +a0)(By /g +jtan a;p)
—ay)/(By +ag)

—exp(—2wBg) exp(—j2(wB; +a,p)). (28)

exp(—2wh,)

xp(—2wp,)

=(Bo

The physical significance of (28) is evident. The first term
represents the wave reflected by the sheet, and the second
term represents the wave reflected by the metal piston,
where exp(—2wfg) is the decay factor and exp(—j2(wB,
+a,p)) is the phase delay. The appearance of the factor 2
is due to the fact that the wave passes the sheet twice; the
minus sign is due to the phase reversal at the metal piston.

The maximum absorption occurs when A4 is equal to
zero. From (28) we have

= ([ (B +a,)*+ B3] ~In[ (B~ ;) + B3]} /4Bs

=[27rk——2w,31+tan‘l('BI’8R ) tan“l(—ﬁlézal)}

20,

(29)

For example, if r,, =2, h=MA/2, it follows that Aa, =5.4414,
ABg =0.4576, and AB, =5.9602. From (29) we obtain w=
3.0628\ and p=0.1721A. Fig. 6 shows 4 as a function of
/A for selected values of w.

VII. Tuae TE WAVE

From the boundary conditions (2a), (3a), (4), (6) for the
TE wave, the general solutions are
)
my

Eu(y,2)= 'Eogn eXP( —a,,(z+ —;i)) cos( 2';_;;
(30)

£ So,on{ o+ ool 250
(31)
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2 R=1200Q, h=2/2

@ (1)w =2 000 %, TM-WAVE
(2)w =2 500 %, TM-WAVE
(3)w=3063 ), TM-WAVE
(4)w=0 271\, TE-WAVE

1AL

a- 4
s 4
2 m .
2)
) )
I 1
025 05 075
P/N
Fig. 6. |A| as a function of p/A.

TABLE 1II

REAL AND IMAGINARY PARTS OF L, , FOR rg=1

m n=20 n=1 n=2

0 1.1384 + 30.1128 -0.0107 - j0.1023 0.0012 + 30.0340
1 -0.0006 - 30.1167 -1.0093 - j0.0222 0.0026 + j0.0509
2 -0.0028 -~ j0.0384 -0,0025 + j0.0518 1.0029 + j0.0081
3 -0.0017 - j0.0191 -0.0004 + j0,0207 0.0011 - 30.0340
4 -0.0011 ~ j0.0115 -0.0001 + j0.0115 0.0002 - j0.0145
5 -0.0008 - j0.0076 -0.0000 + j0.0074 0.0001 - j0.0085

n=3 n =4 n=35

-0.0003 - j0.0170
-0.0004 ~ 30.0203
.0011 - j0.0339
-1.0014 - j0.0041
-0.0006 + j0.0254
-0.0002 + j0.0113

L0001 + j0.0102 -0.0000 — 3§0.0068
.0001 + 30.0113  =0.0000 - 30.0072
0002 + 30.0145 —0.0001 - j0.0085
0006 + §0.0254 -0.0002 — 30.0113
.0009 + j0.0025 -0.0004 - 10.0203
L0004 - §0.0203 -1.0006 - j0.0017

W W N O
1
(=]

[ = = o R

Exn(y,Z)— [b exp( )
+c, exp( ( —%))] siny,(h¥y), y=0 (32)

Em(y,z)= 2 d, exp( Z_%))COS( 2’;;1‘77)’)

(33)
Substituting (32) into (6) we get
coty,h=j/rgy,h,  rg=2R/khR,. (34)
Substituting (30)—(33) into (2a) and (3a), we obtain the
equations for the coefficients

(gm+am) = 2 Lm,n(bn+cn exp(—w,B,,)),

n=0

m=0,1,2,--- (35)
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am(gm—-am)= 2 Lm,n(bn_cn eXp(—Wﬁn))Bn,

n=0
m=0,1,2,--- (36)
dm= 2 Lm,n(bn exp(—w,B,,)+cn),
n=0
m=0,1,2,--- (37)
amdm= 2 Lm,n(bn eXp(-—w,B,,)—C,,),B,,,
n=0
m=0,1,2,--- (38)
where
fh sin yn(h—y)cos( 2m+ 1 ary)dy
Yo 2h
e k 2m+1 2
[ oot m) [0
2v. h h
_ v,k cos v, . (39)

[( 2m2+ 1 W)2_ (v,,h)z}

The form of (35)—(38) is exactly the same as (15)-(18)
except the values of g, and L,, , are different because the
eigenequation (34) and the definition of L, , in (39) are
different. Thus, we have the same formal solutions (22)
and (23) and, for the absorber, the solution is the same as
(28).

The quantities yoh, Boh are plotted in Fig. 7 as func-
tions of r;. In Fig. 8 | 4| and |T’| are shown as functions of
w/A; they are plotted as functions of rg; in Fig. 3. The
L, ,are listed in Table III for ry=1.

VIIL

All effects due to the presence of a resistive sheet have
been determined by the parameter r,, or r; for the TM or
TE wave, respectively. The sensitive ranges of r are 0.2—-20
for the TM wave, 0.02-2 for the TE wave (see Figs. 2, 3,
and 7).

Both the TM wave and the TE wave have the maximum
decay coefficient Bg(r) (see Figs. 2 and 7): for the TM
wave at r,, =2, for the TE wave at r;=0.2. From these
two conditions, we can determine the resistance R and
height 4 such that both the TM wave and the TE wave are
subjected to maximum absorption. Because ry,rp=
(2R/R,)? we obtain R=120 @ and A=\/2.

The decay coefficient of the TE wave is much larger
than that of the TM wave. Because the sheet extends to
infinity in the x-direction, it interacts effectively with the
TE wave which has an E, component. Fig. 9 shows that
Bg of the TE wave is 5 times that of the TM wave.

With the sheet as an absorber both TM and TE waves
have points of maximum absorption, but the absorption
of the TE wave is more evident as shown in Fig. 6. The
optimum width for the TE wave is much more shorter
than that for the TM wave. When R=120 @, w=A/4 for
the TE wave and w=3A for the TM wave.

CONCLUSION
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(1) Relyoh), TE-WAVE
(2) Im{yh), TE-WAVE
(3) Re(Boh), TE-WAVE
(4)Im(Boh), TE~WAVE

/
1 L 1 11
) oF 05 2512 510 00 T
Fig. 7. Real and imaginary parts of yok and Byh as functions of rg;
kh=1.
R=3008,h=)/2
1) 1T1 of TE-WAVE
(2)1A1x3 of TE-WAVE
10 =
(]
)
o5 -
) 1 L 1 1
05 10 15 20 25

—_
w/N

Fig. 8. |T|and |A4]| as functions of w/A.

h=x/2
(1) Bgh of TM-WAVE
(2) Bgh of TE-WAVE

[§})

3

L | | f 1 [ |

6 12 30 60 120 300 600 12K 3K
—
Ring

Fig. 9. Comparison of decay coefficients.



1198

TABLE IV
TRANSMISSION COEFFICIENTS 7" AND REFLECTION COEFFICIENTS A
OBTAINED USING N TERMS IN SIMULTANEOUS EQUATIONS (21)

N rM=0.l rM=2 rM=10
L 0.98200 7315698 gogueTi-4B38 5 g5gq.IT-3677
2 0.9815e 313413 g g14¢7I1+4680 ¢ gg9¢,mI1.3700
4 0.0887e7 18976 o gags mI1.4560 o gogq =31.3735
6 0.99056 314883 o gie5m31.4503 () gooe i1.3754
8 0.9908e=31+4780 g 9507714460 o ggyq,m31-3758
A of TH ave
1 0.1417e730:0365 5 10g4710-6093 g 3307311921
2 0.1506e30°0138  § 157,,730:6307 5 3507311884
o 0.1188e110°0397 09457304864 g357,731-199
6 0.1087et10°0553  § 0ge1m30-4417 g 3757311400
8 0.10426%30°0615  § 0g53.730-4143 g g370,731-1000

The solutions (22)—(25) and (28) are of first-order, but
they have sufficient accuracy over a wide range of resis-
tances R. Table IV shows a comparison between the
solutions that have been obtained using different numbers
N of terms in the simultaneous equations (21). Because
the incident field has only one term (g,=§,,) and S ,
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converges more rapidly, the solutions change little when
the number N of terms is larger than 4. When r,,>2, the
relative error in the first-order solution is less than 3
percent. Thus the formulas (22)-(25), (28), and (29) can
be used in practical cases with sufficient accuracy.
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